The HVE/CAND1 gene is required for the early patterning of leaf venation in Arabidopsis.

نویسندگان

  • María Magdalena Alonso-Peral
  • Héctor Candela
  • Juan Carlos del Pozo
  • Antonio Martínez-Laborda
  • María Rosa Ponce
  • José Luis Micol
چکیده

The hemivenata-1 (hve-1) recessive allele was isolated in a search for natural variations in the leaf venation pattern of Arabidopsis thaliana, where it was seen to cause extremely simple venation in vegetative leaves and cotyledons, increased shoot branching, and reduced root waving and fertility, traits that are reminiscent of some mutants deficient in auxin signaling. Reduced sensitivity to exogenous auxin was found in the hve-1 mutant, which otherwise displayed a wild-type response to auxin transport inhibitors. The HVE gene was positionally cloned and found to encode a CAND1 protein. The hve-1 mutation caused mis-splicing of the transcripts of the HVE/CAND1 gene and a vein phenotype indistinguishable from that of hve-2 and hve-3, two putatively null T-DNA alleles. Inflorescence size and fertility were more affected by hve-2 and hve-3, suggesting that hve-1 is hypomorphic. The simple venation pattern of hve plants seems to arise from an early patterning defect. We found that HVE/CAND1 binds to CULLIN1, and that the venation patterns of axr1 and hve mutants are similar, which suggest that ubiquitin-mediated auxin signaling is required for venation patterning in laminar organs, the only exception being cauline leaves. Our analyses of double mutant and transgenic plants indicated that auxin transport and perception act independently to pattern leaf veins, and that the HVE/CAND1 gene acts upstream of ATHB-8 at least in higher order veins, in a pathway that involves AXR1, but not LOP1, PIN1, CVP1 or CVP2.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Interactions between venation pattern formation genes in Arabidopsis thaliana

*Address correspondence to: J. L. Micol, División de Genética and nstituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Alicante, Spain. e-mail: [email protected] ABSTRACT Aiming to contribute to the understanding of the genetic mechanisms underlying venation pattern formation in the vegetative leaves of Arabidopsis thaliana, we have previously analyzed the natural...

متن کامل

Characterization of temperature-sensitive mutants reveals a role for receptor-like kinase SCRAMBLED/STRUBBELIG in coordinating cell proliferation and differentiation during Arabidopsis leaf development.

The balance between cell proliferation and cell differentiation is essential for leaf patterning. However, identification of the factors coordinating leaf patterning and cell growth behavior is challenging. Here, we characterized a temperature-sensitive Arabidopsis mutant with leaf blade and venation defects. We mapped the mutation to the sub-2 allele of the SCRAMBLED/STRUBBELIG (SCM/SUB) recep...

متن کامل

Quantitative analysis of venation patterns of Arabidopsis leaves by supervised image analysis.

The study of transgenic Arabidopsis lines with altered vascular patterns has revealed key players in the venation process, but details of the vascularization process are still unclear, partly because most lines have only been assessed qualitatively. Therefore, quantitative analyses are required to identify subtle perturbations in the pattern and to test dynamic modeling hypotheses using biologi...

متن کامل

The TORNADO1 and TORNADO2 genes function in several patterning processes during early leaf development in Arabidopsis thaliana.

In multicellular organisms, patterning is a process that generates axes in the primary body plan, creates domains upon organ formation, and finally leads to differentiation into tissues and cell types. We identified the Arabidopsis thaliana TORNADO1 (TRN1) and TRN2 genes and their role in leaf patterning processes such as lamina venation, symmetry, and lateral growth. In trn mutants, the leaf v...

متن کامل

The RON1/FRY1/SAL1 gene is required for leaf morphogenesis and venation patterning in Arabidopsis.

To identify genes involved in vascular patterning in Arabidopsis (Arabidopsis thaliana), we screened for abnormal venation patterns in a large collection of leaf shape mutants isolated in our laboratory. The rotunda1-1 (ron1-1) mutant, initially isolated because of its rounded leaves, exhibited an open venation pattern, which resulted from an increased number of free-ending veins. We positional...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Development

دوره 133 19  شماره 

صفحات  -

تاریخ انتشار 2006